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. Abstract

Tﬁe pertprbationvseen in the experimental differential elastic
scatfériné.cross section forvthetheV Hef + Ne system has been.attfibﬁted
to a single.crossing.of two intermolecular‘pétential energy. curves. A new
theoretical treatment of the curvé croséing problem, namely that of Delos and
Thorsoh, is employed to obtéin.the crossing_probabilities and phqses_asso-v.
éiated with the crossing. These are determined by utilizing gﬁ_initio -
potentiais.involved in the crossing andvére further used in-a partial wave
calculafion of the cross~secfion, which'is.compared with.our ekperimént. The
origin of the oscillatory structure obsérved in the differenfial éross secf.
tion is”diééussed in semi—classiCal'terms by defining the proﬁlem in terms .
of tﬁq pseudo—defléction.funCtions;' A_rainbcw effe;t'is shoWn_té be related
to a.particﬁlar feature (a maximum*rather>thén a minimuﬁ) of these deflection

functions.



I.'Ihtroduction

ExténsiVe studies-ofrthe differential scaﬁtering of singly éhé;ged
rare gas ions by faré gas atoms have béen:feported by several léboratoriésl.
These efforts havevcontributed gréatly to our theoréficai understaﬁding of
elastic scattering aﬁd Qarious inelastic processes which generally involve;>
several potehtials_and interacﬁions of thérglectronic states of the collision_
partnérs.v The more detailed theoretical analysis Which is needéd to cope
© with such problems is currently in a state of rapid develoément. . For example,
a unified formal treatment of the two—stété potential curﬁe.crOSSing problem-
~ for atpmic collisions has just,been completed by Delos,énd Thorsong; this
treatment of the two;staté problem being mdre-complete than the sfandard Landéu;
Zener—StuCkieberg_method Whichbhas been used}in.many éalgulafions heretofqre;
Briefly;_the approach»developed‘by Delos and Thorson eSsentially_reduces the' 
prpblém‘of éolving the two coupied second‘order Wéﬁe»equations tQ the>eésiér
task ofvsolving three first oraer S - "trajectéry eqﬁa— _
- tioms". Their'solﬁtions afe readily connected with the S-matrix elementé
describing'the.scattering.amplitudes for the two state system. The inputs to
»such a calculation are the potéhfial cﬁrves in question (eithér é diabatic or
adiabatic representation will suffice) and the inferaction term:Viz(R)'ih‘fhe
vicinity of the érossing.

.'The purpoges of this paper are to: l) demonstrate the results: of
'such a calculation for the scattering system'He++Né (EcmEhO¢V), whére the
initiél inputs are from an ab initio calculation of Sidis andeefebvre-'Brion3
for the NeHe+ molecular ion; 2) compare'theée results with the differential

elastic scattering cross section measured in this laboratory; 3) suggest a
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slight modlflcatlon in the potentials (Which probably isn't uniqﬁe) which is
necessary to brlng‘certaln features of the calculation and experlment into

fairly good agreement and; 4) disucss the origin of the observed scattering
features in semiclassical terms.
II. A Summary of the Theory
The recent theoretical work of Delos and Thorson~, (to which the
reader should refer for complete details of the théory) has reduced the two
coupled Schroedingef equations which are assumed to govern the dynamics of

- the scattering, to the~threéifirst order equations:
Z(4,%) - —W/ﬂ- (£,%) rosuf;(g t) A1)
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and the boundary conditions

Z(1-€)= 0
T(1,-€)=0
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The quantities B and & depend upon the angular momentum quantum

number 2, and the potential parameters through the relations:
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where V12(Rc) is the interaction term, Vl and V2 are the two potential curves
as defined in Fig. 1; F(R ) is the geometric average of Cy\ﬁeff/< and

Rc

: Eﬂvéei/éf{ : and the subscrlpt c refers to the cr0551ng
| Tié set of equatlons (1) are numerlcally 1ntegrated for each value
'of-l frem t = -€'tot =+ (in practice the quantltles r (2 t), F (2, t), and
Z(l,f) have attained their asymptotic values for t = +30.at which p01nt the
integration is halfed). TheAsdlmtiens Fl(R),ePZ(&), and Z(2) have the seme
general.validity in the semiquantal regime as do the JWKBL'phase shifts, even
in the imporﬁant ease‘where fﬁe_élassical turning point.is clese to the
cressing. Moreover; these solutions are connected with the elastic scettering

_problem in the following way:
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Here, na(l)_is'the-JWKBL phase shift resulting frém scattering .

by the ground state adiabatic potential (i.e., V4(R) in Fig. 1).

For a small interaction term, V (Ro), it is neceséary to solve the

12

set (1) only over a relatively narrow range of QIafound Le- Outside.thié
range the Landau-Zener transition probabilit& is a very good approxiﬁation

to 22(2); Fl(l) is constant, approximateiy m/hy and.F2(2)+ﬂ is‘essentially
_thé difference betweenvna(ﬁ) and nd(z), where the,lattér quantity is the-phase
shift corresponding to the diabatic potenfial (i.e., Vl(R) in Fig. 1) which

connects to the ground state of the separated atom and ion.
III. Analysis of the Scattering Data

In Fig. 2 are shown the experimental elastic differentiaikéross
'seCtions for the He++ﬁe system at three diffe?éﬁtfenergies.v A£ 6eV the cross
section is smddth and monctonically decréasing,= At 30eV.é pertuibétion in
thé differential cross section appears at large angles.. At hoev the major
porfibn of this perturbatioh is centered in the anguiar range of‘our.appératﬁs'
‘(for'a description of the apparatus, sée-ref. L), and it is to this data_thét
the present analysis Will be directed. It will be assumed in the subsequent
analysis that these perturbations are due to a single'éréssing ofvthe B22+
and C°L" states of NeHe .

An analytic function for the adiabatic curve was carefully.con—
structed using the ab initio calculated points of Sidis3 as'shownAin Fig. 3;
the small value which he obtained for the interaction term (Vl2(Rc)£.26eV) :
ﬁecessitated a sharp "knee" in the adiabatic potential. The functions Z(2),
fi(z), and Fz(l) were found by numerical integration of the set (l), and the
ﬁartial wave sum utilizing eqns. (2) was carried to 1600 terms to evaluate

the cross section.



The reéult showed that the éredicted_perturbaﬁion was iocatgd at 
too small an aﬁgle (about a T° shift to thé ieft relative to the eXperimentai
dafa). Puﬁting aéide uniquenéss considerations, the crossing point was
‘shifted up‘by 1.3.eV aé shown-by-the solid lines in Fig. 3. Using these
. TWo new cﬁrves and the parametérs .

- 4V
e dR

dV,
d R

_ 35.0 'e\Vao |

Re

Y (R) = 0.26 &V
Re = 1.86 o.}

F'( RC,JZJ = 35.74 'e\f'/cnu

the calculation was again pefformed_with-the.result shown in Fig. 4. The

. perturbations iﬁ the theorefical prediction are seen to be ih’@uantitative.
agreement with those resolved in the experiment. - Furthermore, the qualitativé :
aspecfs’of.the'experimental cross section (a sméoth decrease before and
fairly smooth, Qith minor oscillatiohs, after the_crossing'perturbétion) are

satisfactorily reflected by the calculation. The major difference between

the relative differential cross section ¢.0 (6), and g,

expt (6)'13 in the

alc

general decay rate of the cross section.

In determining c-0_ (8) from the observed laboratory scattering

xpt
intensity, the latter was first corrected for thermal and kinematic effects

>

which have been discussed by Lorents and Conklin’. This was done by

measuring (at 5 degree intervals) the energy distribution function for the



" elastic channel andbfiﬁting the observed FWHM to a form
FWHM(8) = 1 + a-8,

. and the laboratory intensities were corrected accordingly. - Subsequently
the normal "scattering volume" correction was made and the appropriate

'('e)._

~ Jacobian employed to retrieve c-O
» . expt

(8),

If one chose to equate the two functions, c-0 (6) and 0___.
i expt . Tcalc

at an angle 200<6<3OO, then a rather noticable disagreement is the'twb

functions would be observed for large scattering angles{ Assuming that a

(25°) is reasonablé, one

. ' : _ AeO
normalization of c-oexpt(e) at 8 =25 'tp Oiale

‘might ask: what systematic experimental error (as‘a function of 6) could

occur for 8 > 25°7 The horizontai lines in Fig. k4 inﬁicate.a conéervatig; estimate
(io'hcéxpt(7$o)) of suqh é systeﬁaticbefrof. VBaSed on this nofmaiizqtion

séhemg, it.is.éléar that there existé a.significant_difference in Oéal¢<e)
aﬁd oexpt(6)_for post'pérturpati§n angles. Two possible explanaﬁions for
fhis disagréement are readily.apparéntf 1) the ab initio diabatic potentiai
(Vl(R)) utilized in the calcﬁlétion is too "hard" for R<R,; or 2) the tﬁo :
- state approximation is nof sufficient,'i.e.,-the elastic channel may be
&epleted for 6 > SOO by other neérby crossings. Since no measureﬁents Qf

‘the inelastic differential cross sections were made, no attempt to .distinguish

- between these two possibilities has been made.
IV. Semiclassical Interpretation

In order to discuss the origin of the observed scattering features

in semiclassical terms, two_pseudo—defleétion functions @i.(z) and 62(9,).

have been defined::
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These fuﬁctions have been constructed by extending the équivalénce reiation
to the'arguments which appear in the partial wave sum in equation (2).

_@1(‘2.)' Vand‘ 82(2) have b_een-' plotted along with the adiabatic and
diébatic deflec'tion functions ° Ga(z) and Gd(l-).in Fig. 5‘, Arl'(z‘) is essen-
:tially a step function around ZC (the angular momentum fof which the classical
turning poiﬁt eqﬁals RC); this.produces a negativé pulée iﬁ tﬁe deflection
_fﬁnction ( Eii(ﬂ))-which serves.to decrease 'E?a(ﬁ)'only'in'thé regién

immediately to the left of £_. As previously mentioned when % becomes small

[ () —= N () -N,0) - T

so that to the left of Ré
6, (1) — §,(4)
The difference between ‘9’2(52,) and @'d(SL)V is the apprdximately wedge-shaped
region of‘area'2ﬂ which has been removed from ’de(l) around Lo
In our numerical procedures we have not solved the set (1) over

the entire range of &. For 2-%, 2 16, Z(2) is almost zero and 22(2) is
entirely negligible. Cdnsequently,-fof large %, the adiabatic phase shifts
are all that need be calculated. Similarly, for % in the region KC—R 2 20,

692(2) has converged to é;d(z). In this same region rl(z) has been extra-

polated; this makes negligible difference in the resulting calculation since



Fl(SL) has attained its limit (approximately w/k) and makes no further-contriA'.
bution to @l(ﬁl). In this region the Landau-Zener approximation has been

used for Zg(l), that is:

L) =exp —217"'?\1[(%'[ |
| ’ ‘ Re RiRc

Q-

, -1 .
V(RC_;‘N] "'sz(p\_c\ :

The semiclassical predict.ions of ._81(2) agd @2(2) for the
-differential éross sgction may now be> stated; here, féferences to_a_ngles
-ahd.values -o'f £ will be to f‘ig. 5. For 6 > 63 ﬁhere are i:wo.paths the
‘system may follow, i.e. @l(ﬂ,) = @a(ﬂ,) and @2(.52,) = .@.d(ﬁ,).. Since Z(%)
' is almost unity @-d(ﬂ,)‘bésica.lly accounts for the differential cross section
in this ‘regioﬁ. Since Z(,Q,)'.i‘s not identically unity howéver, théré should

5. A ‘straight forward

" be some small amplitude oscillations in o(B) for 6 > 6
semiclassical treatment shows that the cross section should oscillate with
 periodicity.

A9 = ir_ - : RO

an}d amplitu.de of approximately one tenth the average intensity. Furthermore,
equation (3) is found to be valid for all angles larger.than 60 i.e., equé,tion
(3) predicts the periodicit'ies of the high freqﬁncy oscillations of the
célculated differential cross sections in this angular region. Since only

one classical trajectory @l(ﬁl}) = . @a(ﬁ) exists for 6 < _Goiall oscillations

are damped out in this region.



'Oisonnand Smithlg'ha&é pointed QUt_tﬁat the minimum.in (Dé.eould
give»rise to a rainbow effect iﬁ the‘differeﬁtial cross sectioﬁ. .However,
by referring to the graph'oflzg(l) it is apparant that the probability fhat
thebsystem Will_uhdergo‘a deflection of‘eg_is'yery smell; .Coﬁseqﬁepfly this
rainbow effect ehould not appear in differential cross section. vathez
eoupiihg were sfronger, the»effecte-of this broad minimumﬂweuld.prqbably be
quite spectacular.

| The large "rainbow-like" envelope (at 52°) in the crqss.section is
essentially due to the ﬁegatiVelX‘eurved double-valued portion of 691(2)-
immediately to the r?ght ofvzc; Since'€91(2) posseéses the other double-
valued portion to the left of ﬁc, this last assertion should be verified.
-~ In ofder to do so e large negative pulse has‘been added to E)l(l) in the
vicinity of its miniﬁum end the cross eection'recalculated. The results
are.shown in Fig. 6. Since the rainbow stfﬁeture has onl& mbved.about 2O3'
the small‘amoUnt.by which the ma#imum of 651(2) has changed iﬁstead'of the'.
large‘change effected at‘its'mihimum, the initieltassertion is 5elieved to

be correct. Also, since the multiplicity of (the distorted) ©,(2) has
been extended to include angles less than eo, the higher frequency oscillations

appear at smaller ‘angles.
V. Conclusion

Intermolecular potentials very.similar to the ab initio potentials
of Sidis along with the semiquantal method of Delos and Thorson have been
utilized in a calculation of the elastic differentialecross section and

compared to the experimental results. In this particular problem (He™ + Ne)
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__fhe region in which thev"trajéctory eéuationé".must be solved to obtain~the‘
~transition probability and the corfesponding phase shifts extendé‘ovér a

-émall rangetof angular momenta, so.that the numerical Qork is nétbtoo férmid—
-able and the éorreét evaluation of‘these qgantities is seen to prbvide'better,
agreement‘with experiment (particularly in the elastic scattering in the
region'ﬁost sensitive to the crossiné) than did earlier treatmenfs of this
problem. Furthermore, the Delos-Thorson treatment lepdsbitself to a semi-

- classical interpretation, which is shown to be éapabel ofvshedding»considerable_

light on the basic physics associated with the two-state crossing .problem.
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Figure Captions

+ L
Figure 1 = Schematic diagram of the potential curves for NeHe .discussed in
this paper. Vl(R)'and‘Vé(R) are the results of diabatic calcula-

tions and V,(R) is an assumed adiabatic interaction..

- Figure 2. Experimental differential elastic scattefing croés.sections for

Het +.Ne_at; (a) Loev, (b) 30éV, (é) 6ev.

Figure 3  Circles - result of the Sidis calculation, solid lines - analytic
functions representing the adiabatic and diabatic. curves correspond-
ing to these circles, dashed line - curves which were used to

calculate.the differentiai éross section in figure L.

Figﬁre h Differential elastic scattering cross section, LOeV He+'+ Ne:

' solid ‘line - calculation; points - experiment.

Figure 5 Inset - the function Z2(2); solid line - adiabatic deflection
funetion Eaa, chain line - diabatic_deflection function éﬁd,
dashed line - the pseudo deflection function é92, dotted line -

the pseudo'deflection function 631.

Fibgure. 61 (Eottdm) éolid lines - @l(ﬁl') and 92(2) from f.igure 5, dashed 1 |
| line - the distortion introduced into €9l;'(top) solid line -

convoluted differential créss'section correspondipg to'unaistdrted

CH and 692, dashed line - convoluted differentiél cross section

where 691 has been distorted. Both ecross sections_have been cal-

+ :
"culated for the 40OeV He + Ne elastic scattering system.
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